- #1
spaghetti3451
- 1,344
- 34
For the distance function ##(\Delta s)^2 = (\Delta r)^2 + (r \Delta \theta)^2##, the rotation matrix is ##R(\theta) = \begin{pmatrix} cos\ \theta & - sin\ \theta \\ sin\ \theta & cos\ \theta \end{pmatrix}##.
That means that for the distance function ##(\Delta s)^2 = (\Delta r)^2 + ((1-\frac{\phi}{2 \pi})r \Delta \theta)^2##, the rotation matrix is ## R(\theta) = \begin{pmatrix} cos\ [(1-\frac{\phi}{2 \pi})\ \theta] & - sin\ [(1-\frac{\phi}{2 \pi})\ \theta] \\ sin\ [(1-\frac{\phi}{2 \pi})\ \theta] & cos\ [(1-\frac{\phi}{2 \pi})\ \theta] \end{pmatrix}##?
The generator for the original rotation matrix is ##X = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}##. That means that the new rotation matrix has the generator ##X = \begin{pmatrix} 0 & -i(1-\frac{\phi}{2 \pi}) \\ i(1-\frac{\phi}{2 \pi}) & 0 \end{pmatrix}##?
The problem with this is that because ##R(\theta) = \mathbb{1} - i \theta X + ...##, I can only see one generator ##X## when in fact there should be two generators because there are two parameters ##\theta## and ##\phi##.
Any thoughts on this?
That means that for the distance function ##(\Delta s)^2 = (\Delta r)^2 + ((1-\frac{\phi}{2 \pi})r \Delta \theta)^2##, the rotation matrix is ## R(\theta) = \begin{pmatrix} cos\ [(1-\frac{\phi}{2 \pi})\ \theta] & - sin\ [(1-\frac{\phi}{2 \pi})\ \theta] \\ sin\ [(1-\frac{\phi}{2 \pi})\ \theta] & cos\ [(1-\frac{\phi}{2 \pi})\ \theta] \end{pmatrix}##?
The generator for the original rotation matrix is ##X = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}##. That means that the new rotation matrix has the generator ##X = \begin{pmatrix} 0 & -i(1-\frac{\phi}{2 \pi}) \\ i(1-\frac{\phi}{2 \pi}) & 0 \end{pmatrix}##?
The problem with this is that because ##R(\theta) = \mathbb{1} - i \theta X + ...##, I can only see one generator ##X## when in fact there should be two generators because there are two parameters ##\theta## and ##\phi##.
Any thoughts on this?