- #1
Plantation
- 14
- 1
- Homework Statement
- $$[a_{\vec{p_1} s_1 n}, a^{\dagger}_{\vec{p_2}s_2 n}]= (2 \pi)^3 \delta^{3}(\vec{p_1}-\vec{p_2}) \delta_{s_1, s_2} . $$
- Relevant Equations
- $$ \langle \vec{p_1} | \vec{p_2} \rangle = 2 \omega_1 ( 2\pi)^3 \delta^{3}(\vec{p_1}-\vec{p_2}) $$
I am reading the Schwartz's quantum field theory, p.207 and stuck at some calculation.
In the page, he states that for identical particles,
$$ | \cdots s_1 \vec{p_1}n \cdots s_2 \vec{p_2} n \rangle = \alpha | \cdots s_2 \vec{p_2}n \cdots s_1 \vec{p_1}n \cdots \rangle, \tag{12.5}$$
where ##\alpha = e^{i\phi}## for some real ##\phi##.
From this, he argues that for boson case we obtain
$$a^{\dagger}_{\vec{p_1} s_1 n} a^{\dagger}_{\vec{p_2}s_2 n} | \psi \rangle = a^{\dagger}_{\vec{p_2}s_2 n} a^{\dagger}_{\vec{p_1} s_1 n} | \psi \rangle \tag{12.7}$$ for all ##|\psi\rangle## (I don't know why this is true from (12.5)) so that
$$ [a^{\dagger}_{\vec{p_1} s_1 n}, a^{\dagger}_{\vec{p_2}s_2 n}] = [a_{\vec{p_1} s_1 n}, a_{\vec{p_2}s_2 n}] =0 \tag{12.8}$$
And he saids that since ## \langle \vec{p_1} | \vec{p_2} \rangle = 2 \omega_1 ( 2\pi)^3 \delta^{3}(\vec{p_1}-\vec{p_2}) ##, we can use same argument to show that
$$[a_{\vec{p_1} s_1 n}, a^{\dagger}_{\vec{p_2}s_2 n}]= (2 \pi)^3 \delta^{3}(\vec{p_1}-\vec{p_2}) \delta_{s_1, s_2} . \tag{12.9} $$
Q. And why this is true? How can we use the formula for ##\langle \vec{p_1} | \vec{p_2} \rangle## ? What should I catch?
In the page, he states that for identical particles,
$$ | \cdots s_1 \vec{p_1}n \cdots s_2 \vec{p_2} n \rangle = \alpha | \cdots s_2 \vec{p_2}n \cdots s_1 \vec{p_1}n \cdots \rangle, \tag{12.5}$$
where ##\alpha = e^{i\phi}## for some real ##\phi##.
From this, he argues that for boson case we obtain
$$a^{\dagger}_{\vec{p_1} s_1 n} a^{\dagger}_{\vec{p_2}s_2 n} | \psi \rangle = a^{\dagger}_{\vec{p_2}s_2 n} a^{\dagger}_{\vec{p_1} s_1 n} | \psi \rangle \tag{12.7}$$ for all ##|\psi\rangle## (I don't know why this is true from (12.5)) so that
$$ [a^{\dagger}_{\vec{p_1} s_1 n}, a^{\dagger}_{\vec{p_2}s_2 n}] = [a_{\vec{p_1} s_1 n}, a_{\vec{p_2}s_2 n}] =0 \tag{12.8}$$
And he saids that since ## \langle \vec{p_1} | \vec{p_2} \rangle = 2 \omega_1 ( 2\pi)^3 \delta^{3}(\vec{p_1}-\vec{p_2}) ##, we can use same argument to show that
$$[a_{\vec{p_1} s_1 n}, a^{\dagger}_{\vec{p_2}s_2 n}]= (2 \pi)^3 \delta^{3}(\vec{p_1}-\vec{p_2}) \delta_{s_1, s_2} . \tag{12.9} $$
Q. And why this is true? How can we use the formula for ##\langle \vec{p_1} | \vec{p_2} \rangle## ? What should I catch?