I Schwarzschild Metric Singularity: Why?

Charles_Xu
Messages
5
Reaction score
0
Why does the Schwarzschild metric have a singularity at r=0 if it is only valid outside the spherically symmetric static mass?
 
Physics news on Phys.org
Charles_Xu said:
Why does the Schwarzschild metric have a singularity at r=0 if it is only valid outside the spherically symmetric static mass?
If we are talking about the vacuum region outside a spherically symmetric static mass, that region does not include ##r = 0##, and it does not include a singularity.

The singularity at ##r = 0## is only present in a black hole spacetime, where the vacuum Schwarzschild region is not outside a static mass; if a mass (i.e., a region occupied not by vacuum but by matter) is present in the spacetime, it is not static but is a collapsing region (as in the Oppenheimer-Snyder 1939 model of gravitational collapse), and the vacuum region outside it goes all the way down to ##r = 0##.
 
Charles_Xu said:
Why does the Schwarzschild metric have a singularity at r=0 if it is only valid outside the spherically symmetric static mass?
The Schwarzschild solution to the EFE is vacuum everywhere - no mass anywhere, stress-energy tensor is zero everywhere, the ##M## that appears in the metric is a parameter that characterizes the solution not the mass of anything. Thus any point with ##r\gt 0## is an element of the manifold and it makes sense to consider the singularity at ##r=0##.

When we apply the Schwarzschild solution to the vacuum outside of a real object of mass ##M## and non-zero radius we’re considering just a subset of the entire manifold, a subset that doesn’t include the singularity.
 
Just to be slightly pedantic: the Schwarzschild manifold does not include r=0.
 
Dale said:
Just to be slightly pedantic: the Schwarzschild manifold does not include r=0.
This is true but properly stating it was more work than I wanted to do.
 
  • Like
Likes vanhees71 and Dale
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
Back
Top