- #1
mhill
- 189
- 1
Given the path integral
[tex] < -\infty | \infty > = N \int D[\phi ]e^{i \int dx (L+J \phi ) } [/tex]
then , it would be true that (Schwinger)
[tex] \frac{\partial < -\infty | \infty >}{\partial J }= < -\infty |\delta \int L d^{4}x | \infty > [/tex]
If so, could someone provide an exmple with the Kelin-gordon scalar field plus an interaction of the form [tex] \phi ^{4} [/tex]
[tex] < -\infty | \infty > = N \int D[\phi ]e^{i \int dx (L+J \phi ) } [/tex]
then , it would be true that (Schwinger)
[tex] \frac{\partial < -\infty | \infty >}{\partial J }= < -\infty |\delta \int L d^{4}x | \infty > [/tex]
If so, could someone provide an exmple with the Kelin-gordon scalar field plus an interaction of the form [tex] \phi ^{4} [/tex]