- #1
Saracen Rue
- 150
- 10
Firstly I know how to do this with first derivatives in differential equations - for example say we had ##\frac{dy}{dx}=4y^2-y##, and we're also told that ##y=1## when ##x=0##.
##\frac{dy}{dx}=4y^2-y##
##\frac{dx}{dy}=\frac{1}{4y^2-y}=\frac{1}{y\left(4y-1\right)}=\frac{4}{4y-1}-\frac{1}{y}##
##\int _{ }^{ }\frac{dx}{dy}dy=\int _{ }^{ }\frac{4}{4y-1}dy-\int _{ }^{ }\frac{1}{y}dy##
##x=\ln \left(\left|4y-1\right|\right)-\ln \left(\left|y\right|\right)+c##
Substituting in ##y=1## and ##x=0##, we can find ##c##:
##x=\ln \left(\left|4y-1\right|\right)-\ln \left(\left|y\right|\right)+c##
##0=\ln \left(3\right)+c,\ c=-\ln \left(3\right)##
##x=\ln \left(\left|4y-1\right|\right)-\ln \left(\left|y\right|\right)-\ln \left(3\right)##
##x=\ln \left(\frac{\left|4y-1\right|}{3\left|y\right|}\right)##
##3e^x=\left|4-\frac{1}{y}\right|##
##4-\frac{1}{y}=-3e^x,4-\frac{1}{y}=3e^x##
Because we know that ##y## has to equal postive ##1## when ##x## equals ##0##;
##4-1=-3e^0,\ 4-1=3e^0##
##3=-3,\ 3=3##
As the first statement is false, the second one must be true.
##∴4-\frac{1}{y}=3e^x##
##\frac{1}{y}=4-3e^x##
##y=\frac{1}{4-3e^x}##.
So as you can see it's relatively simple to solve a differential equation of the form ##\frac{dy}{dx}=f\left(y\right)##, but I'm wondering if it would be possible to solve one in the form of ##\frac{d^2y}{dx^2}=f\left(y\right)##. I've tried looking it up online but I haven't been able to find anything useful.
##\frac{dy}{dx}=4y^2-y##
##\frac{dx}{dy}=\frac{1}{4y^2-y}=\frac{1}{y\left(4y-1\right)}=\frac{4}{4y-1}-\frac{1}{y}##
##\int _{ }^{ }\frac{dx}{dy}dy=\int _{ }^{ }\frac{4}{4y-1}dy-\int _{ }^{ }\frac{1}{y}dy##
##x=\ln \left(\left|4y-1\right|\right)-\ln \left(\left|y\right|\right)+c##
Substituting in ##y=1## and ##x=0##, we can find ##c##:
##x=\ln \left(\left|4y-1\right|\right)-\ln \left(\left|y\right|\right)+c##
##0=\ln \left(3\right)+c,\ c=-\ln \left(3\right)##
##x=\ln \left(\left|4y-1\right|\right)-\ln \left(\left|y\right|\right)-\ln \left(3\right)##
##x=\ln \left(\frac{\left|4y-1\right|}{3\left|y\right|}\right)##
##3e^x=\left|4-\frac{1}{y}\right|##
##4-\frac{1}{y}=-3e^x,4-\frac{1}{y}=3e^x##
Because we know that ##y## has to equal postive ##1## when ##x## equals ##0##;
##4-1=-3e^0,\ 4-1=3e^0##
##3=-3,\ 3=3##
As the first statement is false, the second one must be true.
##∴4-\frac{1}{y}=3e^x##
##\frac{1}{y}=4-3e^x##
##y=\frac{1}{4-3e^x}##.
So as you can see it's relatively simple to solve a differential equation of the form ##\frac{dy}{dx}=f\left(y\right)##, but I'm wondering if it would be possible to solve one in the form of ##\frac{d^2y}{dx^2}=f\left(y\right)##. I've tried looking it up online but I haven't been able to find anything useful.