- #1
clairaut
- 72
- 0
How does one derive the second derivative test for three variables?
It's clear that
D(a,b) = fxx * fyy - (fxy)^2
AND
fxx(a,b)
Tells us almost all we need to know about local maxima and local minima for a function of 2 variables x and y, but how do I make sense of the second directional derivative of a function of 3 variables x,y,z to form the simple conclusions seen above?
I can easily take the second directional derivative of f(x,y) to derive the above.
It's clear that
D(a,b) = fxx * fyy - (fxy)^2
AND
fxx(a,b)
Tells us almost all we need to know about local maxima and local minima for a function of 2 variables x and y, but how do I make sense of the second directional derivative of a function of 3 variables x,y,z to form the simple conclusions seen above?
I can easily take the second directional derivative of f(x,y) to derive the above.