- #1
Ravendark
- 7
- 0
Homework Statement
[/B]
Consider the following action:
$$\begin{align}S = \int \mathrm{d}^4 z \; \bar\psi_i(z) \, (\mathrm{i} {\not{\!\partial}} - m)_{ij} \, \psi_j(z)\end{align}$$
where ##\psi_i## is a Dirac spinor with Dirac index ##i## (summation convention for repeated indices). Now I would like to calculate the (inverse) propagator ##G_{kl}(x,y)##, i.e., the second functional derivative of the action:
$$\begin{align}G_{kl}(x,y) = \frac{\delta^2 S}{\delta \psi_l(y) \delta \bar\psi_k(x)}\end{align}$$
My actual problem deals with the anticommuting of Grassmann quantities. Since the derivatives are Grassmann, I should find (is this correct at all? It is quote from the lecture notes I'm using)
$$\begin{align}\frac{\delta^2 S}{\delta \psi_l(y) \delta \bar\psi_k(x)} = - \frac{\delta^2 S}{\delta \bar\psi_k(x) \delta \psi_l(y)} \; .\end{align}$$
Unfortunately, my calculation yields something different.
2. Conventions
Integral: ##\displaystyle \int_z \equiv \int \mathrm{d}^4 z##
Functional derivative: ##\; \dfrac{\delta \psi_i(x)}{\delta \psi_j(y)} = \delta_{ij} \, \delta^{(4)}(x-y) = \dfrac{\delta \bar\psi_i(x)}{\delta \bar\psi_j(y)}##
The Attempt at a Solution
Left hand side:
$$\begin{align}
\frac{\delta^2 S}{\delta \psi_l(y) \delta \bar\psi_k(x)} &= \frac{\delta}{\delta \psi_l(y)} \int_z \, \delta_{ik} \, \delta^{(4)}(z-x) \, (\mathrm{i} {\not{\!\partial}} - m)_{ij} \, \psi_j(z) \\ &= \frac{\delta}{\delta \psi_l(y)} \, (\mathrm{i} {\not{\!\partial}} - m)_{kj} \, \psi_j(x) \\ &= (\mathrm{i} {\not{\!\partial}} - m)_{kj} \, \delta_{jl} \, \delta^{(4)}(x-y) \\ &= (\mathrm{i} {\not{\!\partial}} - m)_{kl} \, \delta^{(4)}(x-y)
\end{align}$$
Looks good so far (?), now the next part...
Right hand side:
$$\begin{align}
- \frac{\delta^2 S}{\delta \bar\psi_k(x) \delta \psi_l(y)} &= \frac{\delta}{\delta \bar\psi_k(x)} \int_z \, \bar\psi_i(z) \, (\mathrm{i} {\not{\!\partial}} - m)_{ij} \, \delta_{jl} \, \delta^{(4)}(z-y) \\ &= \frac{\delta}{\delta \bar\psi_k(x)} \int_z \, \bar\psi_i(z) \, (\mathrm{i} {\not{\!\partial}} - m)_{il} \, \delta^{(4)}(z-y) \\ &= \frac{\delta}{\delta \bar\psi_k(x)} \left\{ \int_z \, \bar\psi_i(z) \, \mathrm{i} \, \gamma^\mu_{il} \, \partial_\mu \, \delta^{(4)}(z-y) - \int_z \, \bar\psi_i(z) \, m_{il} \, \delta^{(4)}(z-y) \right\} \\ &= \frac{\delta}{\delta \bar\psi_k(x)} \left\{ - \int_z \, (\partial_\mu \bar\psi_i(z)) \, \mathrm{i} \, \gamma^\mu_{il} \, \delta^{(4)}(z-y) - \bar\psi_i(y) \, m_{il} \right\} \\ &= \frac{\delta}{\delta \bar\psi_k(x)} \bigl\{ - (\partial_\mu \psi_i(y)) \, \mathrm{i} \, \gamma^\mu_{il} - \bar\psi_i(y) \, m_{il} \bigr\} \\ &= -\delta_{ik} \, \partial_\mu \, \delta^{(4)}(y-x) \, \mathrm{i} \, \gamma^\mu_{il} - \delta_{ik} \, \delta^{(4)}(y-x) \, m_{il} \\ &= (-\mathrm{i} {\not{\!\partial}} - m)_{kl} \, \delta^{(4)}(y-x)
\end{align}$$As you can see, there is an additional minus sign in front of the derivative part...and I have no idea how to "remove" it. Can someone give me a hint please?
EDIT:
I noticed right now that the arguments of the delta functions are still swapped. I can fix the mass part by using that the delta function is even, i.e., ##m_{kl} \, \delta^{(4)}(y-x) = m_{kl} \, \delta^{(4)}(x-y)##. But the derivative part confuses me a bit because I never dealt with a derivative of a delta function in such a way.Best Regards,
Ravendark
Last edited: