Second order diagram for the "scalar graviton"

In summary, the "second order diagram for the scalar graviton" discusses the theoretical framework and implications of scalar graviton interactions within quantum gravity. It focuses on the mathematical representation of these interactions in Feynman diagrams, highlighting the significance of second-order processes in understanding the behavior and properties of scalar gravitons. This analysis contributes to the broader field of particle physics and cosmology by exploring how scalar fields could influence gravitational phenomena.
  • #1
Hill
735
574
Homework Statement
Write down the next-order diagrams. Check the answer using Green's function method.
Relevant Equations
Equation of motion: ##\Box h - \lambda h^2 -J =0##
It has been shown in the text that ##h_0 = \frac 1 {\Box} J## with the diagram
1709130278067.png

and that ##h_1 = \lambda \frac 1 {\Box} (h_0 h_0) = \lambda \frac 1 {\Box} [( \frac 1 {\Box} J)( \frac 1 {\Box}J)]## with the diagram
1709130451437.png


I was not sure if the next order diagram is
1709130608327.png

or rather
1709130745770.png

Thus, I substitute ##h=h_0+h_1+h_2## in the equation of motion and calculate to the ##\mathcal O(\lambda^2)##. I get ##\Box h_2 = 2 \lambda h_0 h_1##.
I understand that the factor 2 means that the last diagram above is correct.
Is it so?
 
Back
Top