- #1
danielu13
- 67
- 0
Homework Statement
y''+4y'+6y
y(0) = 2; y'(0) = 4
Homework Equations
[itex]\alpha ± β = e^{x\alpha}(cosβx + sinβx)[/itex]
The Attempt at a Solution
Auxilary equation is [itex]r^2+4r+6[/itex], which solves for [itex]-2 ± i[/itex]
I get the general solution:
[itex]e^{-2x}(c[/itex]1[itex]cosx + c[/itex]2[itex]sinx)[/itex]
[itex]y' = -2e^{-2x}(c[/itex]1[itex]cosx + c[/itex]2[itex]sinx) + e^{2x}(c[/itex]2[itex]cosx - c[/itex]1[itex]sinx)[/itex]
[itex]= c[/itex]1[itex](cosx-sinx) + c[/itex]2[itex](cosx+sinx) = 4[/itex]
I also have:
c1 + c2 = 2 from the initial value.
I now have a system of equations, but don't really know how to solve it without using a computer.