- #1
sav26
- 2
- 0
Hi there can someone please help me with this differential equation, I'm having trouble solving it
\(\displaystyle
\begin{cases}
y''(t)=-\frac{y(t)}{||y(t)||^3} \ , \forall t >0
\\
y(0)= \Big(\begin{matrix} 1\\0\end{matrix} \Big) \
\text{and}
\
y'(0)= \Big(\begin{matrix} 0\\1\end{matrix} \Big)\end{cases}
\\
y(t) \in \mathbb{R}^2 \ \forall t
\)
Thanks in advance ^^
\(\displaystyle
\begin{cases}
y''(t)=-\frac{y(t)}{||y(t)||^3} \ , \forall t >0
\\
y(0)= \Big(\begin{matrix} 1\\0\end{matrix} \Big) \
\text{and}
\
y'(0)= \Big(\begin{matrix} 0\\1\end{matrix} \Big)\end{cases}
\\
y(t) \in \mathbb{R}^2 \ \forall t
\)
Thanks in advance ^^