I Second Order ODE with Exponential Coefficients

thatboi
Messages
130
Reaction score
20
Hi all,
I have another second order ODE that I need help with simplifying/solving:
##p''(x) - D\frac{e^{\gamma x}}{A-Ae^{\gamma x}}p'(x) - Fp(x) = 0##
where ##\gamma,A,F## can all be assumed to be nonzero real numbers and ##D## is a purely nonzero imaginary number.
Any help would be appreciated!
 
Physics news on Phys.org
Set t = e^{\gamma x}. Then <br /> \gamma^2(1-t)t^2 \frac{d^2p}{dt^2} + \left(\gamma^2(1-t)t - \frac{\gamma D}{A} t^2\right) \frac{dp}{dt} - F(1-t)p = 0. This looks like it should be solvable by Frobenius' method.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top