- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Consider the sequence of positive integers which satisfies \(\displaystyle a_n=a_{n-1}^2+a_{n-2}^2+a_{n-3}^2\) for all $n \ge 3$.
Prove that if $a_k=1997$, then $k \le 3$.
Prove that if $a_k=1997$, then $k \le 3$.