- #1
mathgirl1
- 23
- 0
a) Show that sum_(n=0)^infinity (2^n x^n)/((1+x^2)^n) converges for all x in R\{-1,1}
b) Even though this is not a power series show that sum above = 1 + sum_(n=1)^infinity (2nx^n) for all -1<x<=1.
For part a by the ratio and root test we get |(2x)/(1+x^2)| but this does not have an n in it anymore to take the limit as n -> infinity. So I guess this means that the limit as n-> infinity is just (2x)/(1+x^2) which is a real number for all x. So does this mean that it converges for all x since the limit exists and is real? But this logic would mean that it would also converge for 1 and -1 since 2(1)/(1+1^2) = 2/2=1 and the same for -1. But this is cleary not true.
For part b it is clear that the term is 1 when n=0 so I understand how it would be 1 + sum_(n=1)^infinity (2^n x^n)/((1+x^2)^n) but not sure how to deduce that its the sum of 2nx^n.
Any help is much appreciated! Thanks in advance!
b) Even though this is not a power series show that sum above = 1 + sum_(n=1)^infinity (2nx^n) for all -1<x<=1.
For part a by the ratio and root test we get |(2x)/(1+x^2)| but this does not have an n in it anymore to take the limit as n -> infinity. So I guess this means that the limit as n-> infinity is just (2x)/(1+x^2) which is a real number for all x. So does this mean that it converges for all x since the limit exists and is real? But this logic would mean that it would also converge for 1 and -1 since 2(1)/(1+1^2) = 2/2=1 and the same for -1. But this is cleary not true.
For part b it is clear that the term is 1 when n=0 so I understand how it would be 1 + sum_(n=1)^infinity (2^n x^n)/((1+x^2)^n) but not sure how to deduce that its the sum of 2nx^n.
Any help is much appreciated! Thanks in advance!