- #1
alyafey22
Gold Member
MHB
- 1,561
- 1
Prove the following
\(\displaystyle \sum_{k\geq 2}\frac{\log(k)}{k^2}=\zeta(2)\left(\log A^{12}-\gamma-\log(2\pi) \right)\)
\(\displaystyle \sum_{k\geq 2}\frac{\log(k)}{k^2}=\zeta(2)\left(\log A^{12}-\gamma-\log(2\pi) \right)\)