- #1
courtrigrad
- 1,236
- 2
I want to evaluate [tex] \int \frac{\sin x}{x} [/tex].
So [tex] \sin x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} [/tex]. Therefore [tex] \frac{\sin x}{x} = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n+1)!} [/tex]. So would that mean:
[tex] \int \frac{\sin x}{x} = C + \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{2n+1(2n+1)!} [/tex] would be absolutely convergent (i.e. [tex] R = \infty [/tex])?
Thanks
So [tex] \sin x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} [/tex]. Therefore [tex] \frac{\sin x}{x} = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n+1)!} [/tex]. So would that mean:
[tex] \int \frac{\sin x}{x} = C + \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{2n+1(2n+1)!} [/tex] would be absolutely convergent (i.e. [tex] R = \infty [/tex])?
Thanks