- #1
abelian
- 14
- 0
Hi,
I have this series [tex]\sum_{k=1}^{\infty}\frac{\arcsin{\displaystyle\frac{1}{k}}}{k^2}[/tex]
I intended to prove this by Direct Comparison Test using the inequality:
[tex]\frac{\arcsin{\displaystyle\frac{1}{k}}}{k^2} \leq \frac{1}{k^2}[/tex]
Can I justify this inequality by saying that [tex]\arcsin{\frac{1}{x}}[/tex] is a decreasing function?
I have this series [tex]\sum_{k=1}^{\infty}\frac{\arcsin{\displaystyle\frac{1}{k}}}{k^2}[/tex]
I intended to prove this by Direct Comparison Test using the inequality:
[tex]\frac{\arcsin{\displaystyle\frac{1}{k}}}{k^2} \leq \frac{1}{k^2}[/tex]
Can I justify this inequality by saying that [tex]\arcsin{\frac{1}{x}}[/tex] is a decreasing function?