- #1
atomicpedals
- 209
- 7
Homework Statement
The eigenvalue problem H[itex]\psi[/itex]=E[itex]\psi[/itex] for [itex]\phi[/itex] becomes
-[itex]\phi[/itex]''+2x[itex]\phi[/itex]'+((a(a-1))/x2)[itex]\phi[/itex]+(1-2E)=0
assume that [itex]\phi[/itex](x)=[itex]\sum[/itex]anxn+B, determine B.
2. The attempt at a solution
As a first step I took the first and second derivatives of [itex]\phi[/itex]:
[itex]\phi[/itex]'=[itex]\sum[/itex](n+B)anxn+B-1
[itex]\phi[/itex]''=[itex]\sum[/itex](n+B-1)(n+B)anxn+B-2
and then substituted these back into -[itex]\phi[/itex]''+2x[itex]\phi[/itex]'+((a(a-1))/x2)[itex]\phi[/itex]+(1-2E)=0; which is
-[itex]\sum[/itex](n+B-1)(n+B)anxn+B-2+2x([itex]\sum[/itex](n+B)anxn+B-1)+((a(a-1))/x2)([itex]\sum[/itex]anxn+B)+(1-2E)=0
And it's at this point (assuming I'm working correctly up to here) that I stop-short mentally; how do I go about solving this monster for B?