- #1
karush
Gold Member
MHB
- 3,269
- 5
$\displaystyle\text{if} \left| r \right|< 1 \text{ the geometric series }
a+ar+ar^2+\cdots ar^{n-1}+\cdots \text{converges} $
$\displaystyle\text{to} \frac{a}{(1-r)}.$
$$\sum_{n=1}^{\infty}ar^{n-1}=\frac{a}{(1-r)}, \ \ \left| r \right|< 1$$
$\text{if} \left| r \right|\ge 1 \text{, the series diverges}$
$\text{Evaluate using geometric series argument}$
\begin{align*}
\displaystyle
S&=\sum_{k=1}^{\infty}\left[\frac{8}{5^k}-\frac{8}{5^{k+1}}\right] \\
\left[\frac{8}{5^k}-\frac{8}{5^{k+1}}\right]&=\frac{32}{5\cdot5^k} \\
&=
\end{align*}
$\text{ok wasn't sure how to plug this in?}$
$\tiny{206.10.3.75}$
a+ar+ar^2+\cdots ar^{n-1}+\cdots \text{converges} $
$\displaystyle\text{to} \frac{a}{(1-r)}.$
$$\sum_{n=1}^{\infty}ar^{n-1}=\frac{a}{(1-r)}, \ \ \left| r \right|< 1$$
$\text{if} \left| r \right|\ge 1 \text{, the series diverges}$
$\text{Evaluate using geometric series argument}$
\begin{align*}
\displaystyle
S&=\sum_{k=1}^{\infty}\left[\frac{8}{5^k}-\frac{8}{5^{k+1}}\right] \\
\left[\frac{8}{5^k}-\frac{8}{5^{k+1}}\right]&=\frac{32}{5\cdot5^k} \\
&=
\end{align*}
$\text{ok wasn't sure how to plug this in?}$
$\tiny{206.10.3.75}$
Last edited: