- #1
mahler1
- 222
- 0
Homework Statement .
Let ##X## be a topological space and let ##A,B \subset X##. Then
(1) ##A \cap \overline{B} \subset \overline{A \cap B}## when ##A## is open
(2) ##\overline{A} \setminus \overline{B} \subset \overline {A \setminus B}##.
The attempt at a solution.
In (1), using the properties (which I've already proved) that ##\overline{A \cap B} \subset \overline {A} \cap \overline{B}## and ##\overline{\overline{A}}=\overline{A}##, I have ##\overline{A \cap \overline{B}} \subset \overline{A} \cap \overline{\overline{B}}=\overline{A} \cap \overline {B}##. From here I couldn't arrive to anything and I don't know how to use the fact that ##A## is open.
In (2), I've tried to express ##\overline{A} \setminus \overline{B}=\overline{A} \cap {\overline {B}}^c##. I want to show that the subset is contained in ##\overline{A \setminus B}##, in order to do this I should show that for every ##x \in \overline{A} \cap {\overline {B}}^c## and for every open set ##U## with ##x \in U##, I have ##U \cap (\overline{A \setminus B}) \neq \emptyset.## So, if ##x \in \overline {A} \cap {\overline B}^c##, then for every ##U## open with ##x \in U##, ##U \cap A \neq \emptyset## and there is an open set ##V## with ##x \in V \subset \overline {B}^c##. I didn't know how to continue from that point.
Any suggestions would be appreciated.
Let ##X## be a topological space and let ##A,B \subset X##. Then
(1) ##A \cap \overline{B} \subset \overline{A \cap B}## when ##A## is open
(2) ##\overline{A} \setminus \overline{B} \subset \overline {A \setminus B}##.
The attempt at a solution.
In (1), using the properties (which I've already proved) that ##\overline{A \cap B} \subset \overline {A} \cap \overline{B}## and ##\overline{\overline{A}}=\overline{A}##, I have ##\overline{A \cap \overline{B}} \subset \overline{A} \cap \overline{\overline{B}}=\overline{A} \cap \overline {B}##. From here I couldn't arrive to anything and I don't know how to use the fact that ##A## is open.
In (2), I've tried to express ##\overline{A} \setminus \overline{B}=\overline{A} \cap {\overline {B}}^c##. I want to show that the subset is contained in ##\overline{A \setminus B}##, in order to do this I should show that for every ##x \in \overline{A} \cap {\overline {B}}^c## and for every open set ##U## with ##x \in U##, I have ##U \cap (\overline{A \setminus B}) \neq \emptyset.## So, if ##x \in \overline {A} \cap {\overline B}^c##, then for every ##U## open with ##x \in U##, ##U \cap A \neq \emptyset## and there is an open set ##V## with ##x \in V \subset \overline {B}^c##. I didn't know how to continue from that point.
Any suggestions would be appreciated.