Set Theory, Can you check to see if this is right, Is AoA3 a parition of Z?

In summary: So Z = A_0 \bigcup A_1 \bigcup A_2 \bigcup A_3.In summary, the conversation discusses the problem of whether the sets A0, A1, A2, and A3 form a partition of the set of integers, Z. The quotient-remainder theorem is used to show that every integer can be represented in one of the three forms n = 4k, n = 4k+1, or n = 4k+2, and therefore cannot be in any two of the sets A0, A1, A2, or A3. This implies that the sets are mutually disjoint and that every integer is in one of these sets, making Z a union
  • #1
mr_coffee
1,629
1
Hello everyone.

I think i have this right but im' not 100% sure due to the last set, [tex]A_3[/tex]

Here is the problem:
http://suprfile.com/src/1/3m5fyjg/lastscan.jpg

Here is my answer:
Yes. By the quotient-remainder theorem, every integer n can be represented in exactly one of the three forms.
n = 4k or n = 4k+1 or n = 4k+2, for some integer k.
This implies that no integer can be in any two of the sets A0, A1, A2, or A3. So A0, A1, A2, and A3 are mutually disjoint. It also implies that every integer is in one of the sets A0, A1, A3, and A4. So [tex]Z = A_0 \bigcup A_1 \bigcup A_2 \bigcup A_3.[/tex]

But what makes me question myself is they have [tex]A_3[/tex] such that n = 4k+3, which is just another odd integer...meaning if all integers can be expressed by n = 4k or n = 4k+1 or n = 4k+2, does that mean n = 4k+3 is redudnant and it will contain a duplicated number that n = 4k or n = 4k+1 or n = 4k+2 has already formed? If this is the case then this false because for
[tex]Z = A_0 \bigcup A_1 \bigcup A_2 \bigcup A_3.[/tex]
to be true, none of the partions are allowed to have duplicated numbers.

Any help would be great, thanks!
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
I'm not sure what you're asking. All numbers of the form 3k+3 are also of the form 3k. But this doesn't happen with 4k+3.
 
  • #3
Oops i accidently had 3k's where I wanted 4k's. I edited it now.

I'm trying to figure out, if n = 4k, n = 4k+1, n = 4k+2, n = 4k+3, if any of these numbers would repeat themsevles in a set, if they would then this statemnt would be false, if not then it would be true.

such as...
let k = 0;
n = 4k, n = 4k+1, n = 4k+2, n = 4k+3,
n = 0, n = 1, n = 2, n = 3
k = 1
n = 4, n = 5, n = 6, n = 7
k = 2
n = 8, n = 9, n = 10, n = 11

So it looks like these are going to keep going and never duplicate a number, So that's what I'm checking to see if my answer is right up there when i said:

Yes. By the quotient-remainder theorem, every integer n can be represented in exactly one of the three forms.
n = 4k or n = 4k+1 or n = 4k+2, for some integer k.
This implies that no integer can be in any two of the sets A0, A1, A2, or A3. So A0, A1, A2, and A3 are mutually disjoint. It also implies that every integer is in one of the sets A0, A1, A3, and A4.
 
  • #4
Ok. Another way is just assume, say, n=4k+1=4l+3. Then 4(k-l)=2, a contradiction, since 4 doesn't divide 2.
 
  • #5
I don't have to prove this byinduction, so could I write what you said and just add alittle more like...

Let n = 4k+1 = 4l+3, where k and l are integers.
Then 4(k-l) = 2 = (k-l) = 1/2. 1/2 is not an integer which is a contradiction therefore, [tex]{A_0, A_1, A_2, A_3}[/tex] is not a parition of Z.

I do see this contradicts the orginal statemnt because they said n is in Z which is all integers, and 1/2 is not an integer is that what your saying?

I was thinking they would want me to prove this by it violating some rule of sets, like all sets must be different if they are paritioned, meaning you can;t have A1 = {1,2,3,4} A2={5,6,7,8}, A3 ={8,9,10,11} But they never told me to prove it that way so this will work too, if I'm understanding you correctly.
 
  • #6
All I was showing was that the sets A1 and A3 are disjoint. The contradiction was based on the assumption that the k in the defintion of these sets was an integer, and has nothing to do with whether the sets form a partition of Z. What exactly is the quotient-remainder theorem, and how have you tried to use it?
 
  • #7
Status, Sorry about the delayed responce,
The quotient-remainder theorem states given any inteer n and postive integer d, there exists unique integers q and r such that
n = dq + r and 0 <= r < d

if u let d = 4, this implies that here exists an integer quotient q and a remainder r such that
n = dq + r and 0 <= r < 4, but the only nonnegative remainders r that are less than 4 are 0, 1, 2, and 3. Hence
n = 4q or n = 4q + 1 or n = 4q + 2 or n = 4q+3

for some integer q.So wouldn't this make it true?
Here is my answer:
Yes. By the quotient-remainder theorem, every integer n can be represented in exactly one of the three forms.
n = 4k or n = 4k+1 or n = 4k+2 or 4k + 3 for some integer k.
This implies that no integer can be in any two of the sets A0, A1, A2, or A3. So A0, A1, A2, and A3 are mutually disjoint. It also implies that every integer is in one of the sets A0, A1, A3, and A4.
 

Related to Set Theory, Can you check to see if this is right, Is AoA3 a parition of Z?

1. What is Set Theory?

Set Theory is a branch of mathematics that deals with the study of sets, which are collections of objects. It provides a formal framework for understanding the relationships between different sets and their elements.

2. Can you explain the basics of Set Theory?

The basic concepts of Set Theory include sets, elements, subsets, and operations like intersection, union, and complement. Sets are collections of objects, while elements are the individual objects within a set. Subsets are sets that contain only elements from a larger set. Operations like intersection, union, and complement are used to compare and combine sets.

3. What is a partition in Set Theory?

A partition is a way of dividing a set into subsets that are mutually exclusive and collectively exhaustive. In other words, every element in the original set must belong to exactly one of the subsets in the partition. This allows us to break down a complex set into smaller, more manageable parts.

4. Is AoA3 a partition of Z?

No, AoA3 is not a partition of Z. AoA3 is the set of all positive and negative odd integers, while Z is the set of all integers, including both positive and negative numbers. Therefore, AoA3 is not mutually exclusive or collectively exhaustive with Z and does not meet the criteria for a partition.

5. How is Set Theory used in other areas of science?

Set Theory has applications in a variety of scientific fields, including computer science, economics, and physics. In computer science, it is used to study algorithms and data structures. In economics, it is used to model consumer preferences and market demand. In physics, it is used to study the properties of matter and energy. Set Theory also has implications for understanding logic and probability in these fields.

Similar threads

  • Calculus and Beyond Homework Help
Replies
6
Views
1K
  • Calculus and Beyond Homework Help
Replies
16
Views
3K
  • Set Theory, Logic, Probability, Statistics
2
Replies
57
Views
6K
  • Math Proof Training and Practice
2
Replies
61
Views
6K
  • Calculus and Beyond Homework Help
Replies
4
Views
2K
  • Linear and Abstract Algebra
Replies
5
Views
2K
Replies
2
Views
2K
  • Calculus and Beyond Homework Help
Replies
4
Views
4K
  • Calculus and Beyond Homework Help
Replies
2
Views
6K
  • Topology and Analysis
Replies
4
Views
3K
Back
Top