- #1
bugatti79
- 794
- 1
Asked to determine the eigenvalues and eigenvectors common to both of these matrices of
[tex]\Omega=\begin{bmatrix}1 &0 &1 \\ 0& 0 &0 \\ 1& 0 & 1\end{bmatrix}[/tex] and [tex]\Lambda=\begin{bmatrix}2 &1 &1 \\ 1& 0 &-1 \\ 1& -1 & 2\end{bmatrix}[/tex]
and then to verify under a unitary transformation that both can be simultaneously diagonalised. Since Omega is degenerate and Lambda is not, you must be prudent in deciding which matrix dictates the choice of basis.
1)What does he mean by being prudent in the choice of matrix?
2)There is only one common eigenvalue which is [tex]\lambda=2[/tex] I expect the same eigenvector for both matrices for this value of [tex]\lambda=2[/tex]? Wolfram alpha shows different eigenvectors for the same [tex]\lambda[/tex] value.
eigenvector '{'1,0,1'}','{'0,0,0'}','{'1,0,1'}' - Wolfram|Alpha
eigenvector '{'2,1,1'}','{'1,0,-1'}','{'1,-1,2'}' - Wolfram|Alpha3) To show Simultaneous Diagonalisation I applied the unitary transformation as
[tex]U^{\dagger} \Omega U[/tex] and [tex]U^{\dagger} \Lambda U[/tex] to diagonalise the matrices with its entries being the eigenvalues where [tex]U[/tex] are the corresponding columns of eigenvectors.
However, wolfram shows
'{''{'1, 0, 1'}', '{'-1, 0, 1'}', '{'0, 1, 0'}''}''*''{''{'1,0,1'}','{'0,0,0'}','{'1,0,1'}''}''*''{''{'1,-1,0'}','{'0,0,1'}','{'1,1,0'}''}' - Wolfram|Alpha
'{''{'1, 0, 1'}', '{'-1, -1, 1'}', '{'-1, 2, 1'}''}''*''{''{'2,1,1'}','{'1,0,-1'}','{'1,-1,2'}''}''*''{''{'1, -1, -1'}', '{'0, -1, 2'}', '{'1, 1, 1'}''}' - Wolfram|Alpha
Any ideas?
[tex]\Omega=\begin{bmatrix}1 &0 &1 \\ 0& 0 &0 \\ 1& 0 & 1\end{bmatrix}[/tex] and [tex]\Lambda=\begin{bmatrix}2 &1 &1 \\ 1& 0 &-1 \\ 1& -1 & 2\end{bmatrix}[/tex]
and then to verify under a unitary transformation that both can be simultaneously diagonalised. Since Omega is degenerate and Lambda is not, you must be prudent in deciding which matrix dictates the choice of basis.
1)What does he mean by being prudent in the choice of matrix?
2)There is only one common eigenvalue which is [tex]\lambda=2[/tex] I expect the same eigenvector for both matrices for this value of [tex]\lambda=2[/tex]? Wolfram alpha shows different eigenvectors for the same [tex]\lambda[/tex] value.
eigenvector '{'1,0,1'}','{'0,0,0'}','{'1,0,1'}' - Wolfram|Alpha
eigenvector '{'2,1,1'}','{'1,0,-1'}','{'1,-1,2'}' - Wolfram|Alpha3) To show Simultaneous Diagonalisation I applied the unitary transformation as
[tex]U^{\dagger} \Omega U[/tex] and [tex]U^{\dagger} \Lambda U[/tex] to diagonalise the matrices with its entries being the eigenvalues where [tex]U[/tex] are the corresponding columns of eigenvectors.
However, wolfram shows
'{''{'1, 0, 1'}', '{'-1, 0, 1'}', '{'0, 1, 0'}''}''*''{''{'1,0,1'}','{'0,0,0'}','{'1,0,1'}''}''*''{''{'1,-1,0'}','{'0,0,1'}','{'1,1,0'}''}' - Wolfram|Alpha
'{''{'1, 0, 1'}', '{'-1, -1, 1'}', '{'-1, 2, 1'}''}''*''{''{'2,1,1'}','{'1,0,-1'}','{'1,-1,2'}''}''*''{''{'1, -1, -1'}', '{'0, -1, 2'}', '{'1, 1, 1'}''}' - Wolfram|Alpha
Any ideas?