- #1
Apashanka
- 429
- 15
Similarly the paper by @buchert and @ehlers
https://arxiv.org/abs/astro-ph/9510056
Here the author has defined ##v_{ij}=\frac{\partial v_i}{\partial x_j}=\frac{1}{2}(\frac{\partial v_i}{\partial x_j}+\frac{\partial v_j}{\partial x_i})+\frac{1}{2}((\frac{\partial v_i}{\partial x_j}-\frac{\partial v_j}{\partial x_i})+\frac{1}{3}\theta\delta_{ij}-\frac{1}{3}\theta\delta_{ij}=\sigma_{ij}+\frac{1}{3}\theta\delta_{ij}+\omega_{ij}## where ##\vec \omega=\frac{1}{2}(\vec \nabla×\vec v),v## is the velocity.
Now the author has called the term ##\sigma_{ij}## the shear,where ##\sigma_{ij}=\frac{1}{2}(\frac{\partial v_i}{\partial x_j}+\frac{\partial v_j}{\partial x_i})-\frac{1}{3}\theta\delta_{ij}## but ##\sigma_{ij}## is the component of total stress tensor isn't it??
https://arxiv.org/abs/astro-ph/9510056
Here the author has defined ##v_{ij}=\frac{\partial v_i}{\partial x_j}=\frac{1}{2}(\frac{\partial v_i}{\partial x_j}+\frac{\partial v_j}{\partial x_i})+\frac{1}{2}((\frac{\partial v_i}{\partial x_j}-\frac{\partial v_j}{\partial x_i})+\frac{1}{3}\theta\delta_{ij}-\frac{1}{3}\theta\delta_{ij}=\sigma_{ij}+\frac{1}{3}\theta\delta_{ij}+\omega_{ij}## where ##\vec \omega=\frac{1}{2}(\vec \nabla×\vec v),v## is the velocity.
Now the author has called the term ##\sigma_{ij}## the shear,where ##\sigma_{ij}=\frac{1}{2}(\frac{\partial v_i}{\partial x_j}+\frac{\partial v_j}{\partial x_i})-\frac{1}{3}\theta\delta_{ij}## but ##\sigma_{ij}## is the component of total stress tensor isn't it??