- #1
PEEng
- 6
- 1
- TL;DR Summary
- Antiparallel Schottky diode not preventing "shoot-through on lower MOSFET, even with huge deadtime. What's the cause and how can I reduce it?
Hi, im fairly new to this so this is probably a straight forward question. I'm usimg a half-bridge basically as a synchronous buck converter. I'm not trying to get any specific conversion ratio at the moment, I'm just trying to understand all of the operating principles. One of the things tripping me up right now is a pretty large "shoot-through" that occurrs when I turn on the top MOSFET (Q1). I have a huge deadtime so I know this isn't the issue. I've verified I still have the same issue when I hold the gate of lower MOSFET (Q2) negative basically using it as a freewheeling diode. I've tried slowing down the gate of Q1 and still no change. It takes longer for Q1 to turn on but it's occurring as soon as it passes the miller plateau.
I've added an antiparallel Si schottky with Vf=0.4 @10 A (I'm seeimg just below 10 A). The body diode of the MOSFET is measuring about 0.55 V with the multimeter so I figured the schottky should be the one conducting.
Any suggestions or discussion to help understand what's going in is much appreciated.
**edit**
I'm using a TI evaluation board fully populated by them. The only modifications I made was adding the current sense resistor In line wirh the source of the lower MOSFET. I've attached the datasheet.
I've added an antiparallel Si schottky with Vf=0.4 @10 A (I'm seeimg just below 10 A). The body diode of the MOSFET is measuring about 0.55 V with the multimeter so I figured the schottky should be the one conducting.
Any suggestions or discussion to help understand what's going in is much appreciated.
**edit**
I'm using a TI evaluation board fully populated by them. The only modifications I made was adding the current sense resistor In line wirh the source of the lower MOSFET. I've attached the datasheet.
Attachments
Last edited: