MHB Short topical webpage title: Proving Properties of Unital Rings

  • Thread starter Thread starter fredpeterson57
  • Start date Start date
  • Tags Tags
    Rings
fredpeterson57
Messages
1
Reaction score
0
Context: Let R be a unital ring. The characteristic of R is the smallest positive integer n such that $n\cdot 1=0$. If no such n exists, we say R has characteristic 0. We denote the characteristic of a ring by char(R).
I'm particularly lost as to how to prove the following propositions:
(a) Every unital ring of characteristic zero is infinite (I'm thinking of using a proof by contradiction for this, but I have no idea how)

(b) The characteristic of an integral domain is either 0 or prime (if I somehow manage to show that if the characteristic of an integral domain is composite or 1, then it is not an integral domain, then I think I will be able to prove this).
 
Physics news on Phys.org
fredpeterson57 said:
Context: Let R be a unital ring. The characteristic of R is the smallest positive integer n such that $n\cdot 1=0$. If no such n exists, we say R has characteristic 0. We denote the characteristic of a ring by char(R).
I'm particularly lost as to how to prove the following propositions:
(a) Every unital ring of characteristic zero is infinite (I'm thinking of using a proof by contradiction for this, but I have no idea how)

(b) The characteristic of an integral domain is either 0 or prime (if I somehow manage to show that if the characteristic of an integral domain is composite or 1, then it is not an integral domain, then I think I will be able to prove this).
(a) Show that if the ring has characteristic zero then the elements $n\cdot 1\ (n\in\Bbb{N})$ are all different.

(b) If the characteristic $n$ of the ring is a composite number, say $n = pq$, then $0 = n\cdot1 = pq\cdot1 = (p\cdot1)(q\cdot1)$. Now use the fact that an integral domain does not have zero-divisors to show that either $p\cdot1=0$ or $q\cdot1=0$ (contradicting the fact that $n$ is the smallest number with that property).
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top