Shorter half-life and therefore very radioactive -- why?

In summary: So, in summary, having a short half-life makes a radionuclide very radioactive because it has a higher decay constant and therefore a higher specific activity compared to longer lived nuclides.
  • #1
CPW
51
30
TL;DR Summary
In reading through The Physics of Energy, the textbook describes the decay chain of U-238:
"The longest half-life of any descendent in the chain is less 1 million years. Many half-lives are much shorter, making those nuclides very radioactive."

Why does having a short half-life make a radionuclide very radioactive?
In reading through The Physics of Energy, the textbook describes the decay chain of U-238:
"The longest half-life of any descendent in the chain is less 1 million years. Many half-lives are much shorter, making those nuclides very radioactive."
Why does having a short half-life make a radionuclide very radioactive?

My answer, qualitatively:
Relative to the time available for particle emissions from the long-lived parent radionuclide (U-238), the short-lived descendants have much less time to perform all the necessary particle emissions. And therefore, the short-lived radionuclides will have much higher radioactivity, as they will be emitting particles more frequently.
(Am I correct?)

However, quantitatively, I'm stuck.
I'd like a more formal answer than my answer above.

The amount of radioactivity (Bq) must be related to the number of disintegrations per gram per second.
But is there an equation relating these quantities?
 
Physics news on Phys.org
  • #2
The activity (##A##), which is the number of disintegration per unit time, is given by
$$A = \lambda N$$
where ##\lambda## is the decay-constant and ##N## is the number of particles in the sample. If you assume that the number of particles ##N## in the sample does not change significantly during the period of time in which you measure the radioactivity, then you see that the higher the ##\lambda##, the higher the activity (number of disintegrations). It also turns out that the decay-constant ##\lambda## and the half-life ##\tau_{1/2}## are related by:
$$\tau_{1/2} = \frac {\ln 2} {\lambda}$$.
To summarize, small half-life -> big decay-constant ->big number of disintegrations per seconds = high activity.
 
  • Like
Likes artis, Astronuc, Keith_McClary and 2 others
  • #3
Thank you.
 
  • Like
Likes Keith_McClary, dRic2 and berkeman
  • #4
I just want to add that the intermediate nuclides are higher radioactive in the sense that the specific activity, i.e. the activity per gram of the nuclide is higher. However, if the decay products are in equilibrium with each other, the activity of all isotopes is the same, irrespective of their half live.
 

FAQ: Shorter half-life and therefore very radioactive -- why?

What does it mean for a substance to have a shorter half-life?

A shorter half-life means that the substance is unstable and will decay at a faster rate. This is because the half-life is the amount of time it takes for half of the substance to decay into a different element.

Why are substances with shorter half-lives considered to be very radioactive?

Substances with shorter half-lives are considered very radioactive because they emit high levels of radiation as they decay. This can be harmful to living organisms and can also cause damage to materials.

How is the half-life of a substance determined?

The half-life of a substance is determined through experimentation and observation. Scientists measure the amount of the substance present at different time intervals and use this data to calculate the half-life.

Can the half-life of a substance change?

No, the half-life of a substance is a constant value and does not change. It is a characteristic property of the substance and is not affected by external factors.

Why is it important to know the half-life of a radioactive substance?

Knowing the half-life of a radioactive substance is important for understanding its properties and potential risks. It can also help in determining the appropriate safety measures and handling procedures for the substance.

Back
Top