- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
For $n\in \mathbb{N}$ let $A_n$ be the real $n\times n$-matrix with the elements \begin{equation*}a_{ij}=\begin{cases}i , &\text{ if } i=j-1 \\ 1, & \text{ if } i=j \\ -j, & \text{ if } i=j+1 \\ 0 , & \text{ otherwise } \end{cases}\end{equation*}
For $n=1, 2, 3$ we get the matrices :
\begin{equation*}A_1=\begin{pmatrix}1\end{pmatrix} , \ \ A_2=\begin{pmatrix} 1 & 1 \\ -1 & 1\end{pmatrix}, \ \ A_3=\begin{pmatrix}1 & 1 & 0 \\ -1 & 1 & 2 \\ 0 & -2 & 1 \end{pmatrix}\end{equation*}
The determinants are:
\begin{align*}\det (A_1)&=1 \\ \det (A_2)&=\begin{vmatrix} 1 & 1 \\ -1 & 1\end{vmatrix}=1\cdot 1-(-1)\cdot 1=1+1=2 \\ \det (A_3)&=\begin{vmatrix}1 & 1 & 0 \\ -1 & 1 & 2 \\ 0 & -2 & 1 \end{vmatrix}\overset{ \text{ Sarrus } }{ = } \begin{vmatrix}1 & 1 & 0 \\ -1 & 1 & 2 \\ 0 & -2 & 1 \end{vmatrix}\begin{matrix}1 & 1 \\ -1 & 1 \\ 0 & -2\end{matrix} \\ & =1\cdot 1\cdot 1+1\cdot 2\cdot 0+0\cdot (-1)\cdot (-2)-0\cdot 1\cdot 0-(-2)\cdot 2\cdot 1-1\cdot (-1)\cdot 1 \\ & = 1+4+1 =6\end{align*} Now I want to show using induction for $n$ that \begin{equation*}\det (A_n)=n!=n\cdot (n-1)\cdot (n-2)\cdot \ldots \cdot 2\cdot 1\end{equation*}
I have done the following:
Base case: From the above we have that the statement holds for $n=1, 2, 3$, since $\det (A_1)=1=1!$, $\det (A_2)=2=2!$, $\det (A_3)=6=3!$. Induction hypothesis: Let $n\geq 2$. We assume that the statement holds for all $k\leq n$, i.e. that $\det (A_k)=k!$. (IH)
Or do we not use strong induction? (Wondering) Induction step: We want to show that the statement holds then also for $n+1$, i.e. that $\det (A_{n+1})=(n+1)!$.
Could you give me a hint how we could show that? Do we have to expand somehow to use the induction hypothesis? (Wondering)
For $n\in \mathbb{N}$ let $A_n$ be the real $n\times n$-matrix with the elements \begin{equation*}a_{ij}=\begin{cases}i , &\text{ if } i=j-1 \\ 1, & \text{ if } i=j \\ -j, & \text{ if } i=j+1 \\ 0 , & \text{ otherwise } \end{cases}\end{equation*}
For $n=1, 2, 3$ we get the matrices :
\begin{equation*}A_1=\begin{pmatrix}1\end{pmatrix} , \ \ A_2=\begin{pmatrix} 1 & 1 \\ -1 & 1\end{pmatrix}, \ \ A_3=\begin{pmatrix}1 & 1 & 0 \\ -1 & 1 & 2 \\ 0 & -2 & 1 \end{pmatrix}\end{equation*}
The determinants are:
\begin{align*}\det (A_1)&=1 \\ \det (A_2)&=\begin{vmatrix} 1 & 1 \\ -1 & 1\end{vmatrix}=1\cdot 1-(-1)\cdot 1=1+1=2 \\ \det (A_3)&=\begin{vmatrix}1 & 1 & 0 \\ -1 & 1 & 2 \\ 0 & -2 & 1 \end{vmatrix}\overset{ \text{ Sarrus } }{ = } \begin{vmatrix}1 & 1 & 0 \\ -1 & 1 & 2 \\ 0 & -2 & 1 \end{vmatrix}\begin{matrix}1 & 1 \\ -1 & 1 \\ 0 & -2\end{matrix} \\ & =1\cdot 1\cdot 1+1\cdot 2\cdot 0+0\cdot (-1)\cdot (-2)-0\cdot 1\cdot 0-(-2)\cdot 2\cdot 1-1\cdot (-1)\cdot 1 \\ & = 1+4+1 =6\end{align*} Now I want to show using induction for $n$ that \begin{equation*}\det (A_n)=n!=n\cdot (n-1)\cdot (n-2)\cdot \ldots \cdot 2\cdot 1\end{equation*}
I have done the following:
Base case: From the above we have that the statement holds for $n=1, 2, 3$, since $\det (A_1)=1=1!$, $\det (A_2)=2=2!$, $\det (A_3)=6=3!$. Induction hypothesis: Let $n\geq 2$. We assume that the statement holds for all $k\leq n$, i.e. that $\det (A_k)=k!$. (IH)
Or do we not use strong induction? (Wondering) Induction step: We want to show that the statement holds then also for $n+1$, i.e. that $\det (A_{n+1})=(n+1)!$.
Could you give me a hint how we could show that? Do we have to expand somehow to use the induction hypothesis? (Wondering)