- #1
Guest2
- 193
- 0
How do you show that $\displaystyle \lim_{x \to \infty} \frac{50x^{10}+100}{x^{11}+x^6+1}=0$
What I tried:
$\displaystyle \lim_{x \to \infty} \frac{50x^{10}+100}{x^{11}+x^6+1} =\lim_{x \to \infty} \frac{50+100/x^{11}}{1+1/x^{5}+1/x^{11}} = \frac{50+0}{1+0+0} = 50.$
But this is wrong. (Angry)
What I tried:
$\displaystyle \lim_{x \to \infty} \frac{50x^{10}+100}{x^{11}+x^6+1} =\lim_{x \to \infty} \frac{50+100/x^{11}}{1+1/x^{5}+1/x^{11}} = \frac{50+0}{1+0+0} = 50.$
But this is wrong. (Angry)
Last edited: