- #1
MxwllsPersuasns
- 101
- 0
Homework Statement
Let γ : R → Rn be a regular (smooth) closed curve with period p. Show that there exist an orientation preserving diffeomorphism ϕ: R → R, a number p' ∈ R such that ϕ(s + p') = ϕ(s) + p and γ' = γ ◦ ϕ is an arclength parametrized closed curve with period p'
Homework Equations
Arc-length Parameterized Curve: Length = ||dγ/dt|| = 1
Orientation preserving: dΦ/dt > 0 for all t
The Attempt at a Solution
So essentially this question is asking for the existence of a number p' such that when we reparameterize by arc-length we have a new (arclength parameterized) period. Is this correct? And if so, how should I go about proving the existence of such a number? Thanks so much in advance folks, I'm looking forward to the lively discussion!