- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $f:B\rightarrow C$ and $g:C\rightarrow D$.
I want to show that Im(gf)=Im(g), when f is onto. I have done the following:
Let $x\in \text{Im}g$.
Then $\exists y\in C$ such that $g(y)=x$.
Since $f$ is onto, we have that $\exists b\in B$ such that $f(b)=y$.
Then $g(f(b))=x\Rightarrow x=(gf)(b)$.
So, $x\in \text{Im}(gf)$.
Let $x\in \text{Im}(gf)$ then $\exists z\in B$ such that $x=(gf)(z)=g(f(z))$.
Since $f$ is onto, we have that $\forall c\in C \ \ \exists b\in B$ such that $f(b)=c$.
We choose $c=f(z)$ and then we have that $x=g(c)\Rightarrow x\in \text{Im}(g)$.
Is my last step correct? I am not really sure.. (Wondering)
Let $f:B\rightarrow C$ and $g:C\rightarrow D$.
I want to show that Im(gf)=Im(g), when f is onto. I have done the following:
Let $x\in \text{Im}g$.
Then $\exists y\in C$ such that $g(y)=x$.
Since $f$ is onto, we have that $\exists b\in B$ such that $f(b)=y$.
Then $g(f(b))=x\Rightarrow x=(gf)(b)$.
So, $x\in \text{Im}(gf)$.
Let $x\in \text{Im}(gf)$ then $\exists z\in B$ such that $x=(gf)(z)=g(f(z))$.
Since $f$ is onto, we have that $\forall c\in C \ \ \exists b\in B$ such that $f(b)=c$.
We choose $c=f(z)$ and then we have that $x=g(c)\Rightarrow x\in \text{Im}(g)$.
Is my last step correct? I am not really sure.. (Wondering)
Last edited by a moderator: