- #1
polygamma
- 229
- 0
Show that $ \displaystyle \text{Im} \ \exp \left( ae^{be^{i c \ x}} \right) = \exp \left( ae^{b\cos(cx)\cos (b\sin cx)} \right) \sin \left( a\sin (b\sin c x) e^{b\cos cx} \right) $.EDIT: Then by integrating $ \displaystyle f(z) = \frac{z \exp ( ae^{be^{ic \ x}} )}{z^{2}+d^{2}}$ around a contour that consists of the real axis and the upper half of the circle $|z|=R$, show that
$$ \int_{0}^{\infty}\frac{ x\exp \left( ae^{b\cos(cx)\cos (b\sin cx)}\right) \sin \left( a\sin (b\sin cx) e^{b\cos cx} \right)}{x^{2}+d^{2}}\ dx = \frac{\pi}{2}\left( \exp \left( ae^{be^{-c \ d}} \right)-e^{a}\right)$$This requires showing that $ \displaystyle \lim_{R \to \infty} \int_{C_{R}} f(z) \ dz = i \pi e^{a}$ where $C_{R}$ is the upper half of the circle $|z|=R$.
$$ \int_{0}^{\infty}\frac{ x\exp \left( ae^{b\cos(cx)\cos (b\sin cx)}\right) \sin \left( a\sin (b\sin cx) e^{b\cos cx} \right)}{x^{2}+d^{2}}\ dx = \frac{\pi}{2}\left( \exp \left( ae^{be^{-c \ d}} \right)-e^{a}\right)$$This requires showing that $ \displaystyle \lim_{R \to \infty} \int_{C_{R}} f(z) \ dz = i \pi e^{a}$ where $C_{R}$ is the upper half of the circle $|z|=R$.
Last edited: