- #1
Julio1
- 69
- 0
If $\|(x,y)\|=\sqrt{x^2+4y^2}.$ Show that $\|.\|$ is an norm.
Hello MHB! :)
The cases $\|(x,y)\|\ge 0$ and $\|\lambda (x,y)\|=|\lambda|\|(x,y)\|$ are obvious, but the case $\|(x,y)+(x',y')\|\le \|(x,y)\|+\|(x',y')\|$ I don't know how it do? Help me!
Hello MHB! :)
The cases $\|(x,y)\|\ge 0$ and $\|\lambda (x,y)\|=|\lambda|\|(x,y)\|$ are obvious, but the case $\|(x,y)+(x',y')\|\le \|(x,y)\|+\|(x',y')\|$ I don't know how it do? Help me!