- #1
latentcorpse
- 1,444
- 0
I've been asked to show that [itex] \epsilon _{{{\it ijm}}}\epsilon _{{{\it mkl}}} [/itex] is an isotropic tensor using [itex] \epsilon _{{{\it ijk}}}\det \left( M \right) =\epsilon _{{\alpha
\beta \gamma }}m_{{i\alpha }}m_{{j\beta }}m_{{k\gamma }} [/itex].
Then to take the most general form for a fourth rank tensor and show [itex] \epsilon _{{{\it ijm}}}\epsilon _{{{\it mkl}}}=\delta_{{{\it ik}}}
\delta_{{{\it jl}}}-\delta_{{{\it il}}}\delta_{{{\it jk}}} [/itex]
The first part I tried and got completely lost on.
As for the second part all I've managed so far is to ascertain that the most general fourth rank tensor is [itex] c_{{{\it ijkl}}}=\lambda \delta _{{{\it ij}}}\delta_{{{\it kl}}}+\mu
\delta _{{{\it ik}}}\delta_{{{\it jl}}}+\upsilon \delta _{{{\it il}}}
\delta_{{{\it jk}}} [/itex]
\beta \gamma }}m_{{i\alpha }}m_{{j\beta }}m_{{k\gamma }} [/itex].
Then to take the most general form for a fourth rank tensor and show [itex] \epsilon _{{{\it ijm}}}\epsilon _{{{\it mkl}}}=\delta_{{{\it ik}}}
\delta_{{{\it jl}}}-\delta_{{{\it il}}}\delta_{{{\it jk}}} [/itex]
The first part I tried and got completely lost on.
As for the second part all I've managed so far is to ascertain that the most general fourth rank tensor is [itex] c_{{{\it ijkl}}}=\lambda \delta _{{{\it ij}}}\delta_{{{\it kl}}}+\mu
\delta _{{{\it ik}}}\delta_{{{\it jl}}}+\upsilon \delta _{{{\it il}}}
\delta_{{{\it jk}}} [/itex]