- #1
ktatar156
- 1
- 0
Let [tex](E, d)[/tex] be nonzero bilinear space over [tex]K[/tex] and place conditions:
[tex]d(x,y) = d(y,x) \\
d(x,y) = - d(y,x)[/tex]
for every [tex]x,y \in E[/tex]. Show that:
if [tex]E_1[/tex] and [tex]E_2[/tex] are singular (degenerate?) bilinear subspaces relative with [tex]d[/tex] ( [tex](E_1,d|(E_1 \times E_1)[/tex] and [tex](E_2,d|(E_2 \times E_2)[/tex] are singular (degenerate?) bilinear spaces) with the same finite dimension and [tex]E_1 \cap E^d_2 = \{ \theta \}[/tex], then cutting the functional [tex]d[/tex] to the space [tex](E_1 + E_2) \times (E_1 + E_2)[/tex] is non-degenerate form.
Can anyone can help me with that?
I know that space [tex]E[/tex] is symmetric and skew-symmetric, right? And I need to show that [tex]rad(E_1+E_2) = 0[/tex] or [tex](E_1+E_2) \cap (E_1 + E_2)^d = \{ \theta \} [/tex], yes?
[tex]d(x,y) = d(y,x) \\
d(x,y) = - d(y,x)[/tex]
for every [tex]x,y \in E[/tex]. Show that:
if [tex]E_1[/tex] and [tex]E_2[/tex] are singular (degenerate?) bilinear subspaces relative with [tex]d[/tex] ( [tex](E_1,d|(E_1 \times E_1)[/tex] and [tex](E_2,d|(E_2 \times E_2)[/tex] are singular (degenerate?) bilinear spaces) with the same finite dimension and [tex]E_1 \cap E^d_2 = \{ \theta \}[/tex], then cutting the functional [tex]d[/tex] to the space [tex](E_1 + E_2) \times (E_1 + E_2)[/tex] is non-degenerate form.
Can anyone can help me with that?
I know that space [tex]E[/tex] is symmetric and skew-symmetric, right? And I need to show that [tex]rad(E_1+E_2) = 0[/tex] or [tex](E_1+E_2) \cap (E_1 + E_2)^d = \{ \theta \} [/tex], yes?
Last edited: