- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hey again! (Wasntme)
I want to show the following:
I want to show the following:
- If $t \in A$, then $t \subseteq \cup A$
- $\cup \varnothing=\varnothing$
- $ \cup \{ a \}=a$
- Let $x \in t$.
So, $\exists t (t \in A \wedge x \in t) \rightarrow x \in \cup A$.
Therefore, $t \subseteq A$.
- $$x \in \cup \varnothing \leftrightarrow \exists b (b \in \varnothing \wedge x \in b)$$
The empty set $\varnothing$ contains no elements, so there is no $b$ such that $b \in \varnothing$, so there is no $x$, such that $x \in \cup \varnothing$.
Therefore, $\cup \varnothing=\varnothing$.
- $$x \in \cup \{ a \} \leftrightarrow \exists b (b \in \{ a \} \wedge x \in b) \leftrightarrow (b=a \wedge x \in b) \leftrightarrow x \in a$$
Therefore, $\cup \{ a \}=a$.