- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Show that if $m,n$ are positive integers, then $1^m+2^m+...+(n-2)^m+(n-1)^m$ is divisible by $n$.
(Hint: Let $s=1^m+2^m+...+(n-2)^m+(n-1)^m$. Obviously $s=(n-1)^m+(n-2)^m+...+2^m+1^m$.
Consider these relations as equivalent modn and add them.)
$$1^m+2^m+...+(n-2)^m+(n-1)^m=((n-1)^m+(n-2)^m+...+2^m+1^m)modn$$
$$(n-1)^m+(n-2)^m+...+2^m+1^m=(1^m+2^m+...+(n-2)^m+(n-1)^m)modn$$
By adding them we get:
$$(1^m+(n-1)^m)+(2^m+(n-2)^m)+...+((n-2)^m+2^m)+((n-1)^m+1^m)=((n-1)^m+1^m)+((n-2)^m+2^m)+...+(2^m+(n-2)^m)+(1^m+(n-1)^m))modn$$
That means that:
$$n|[(1^m+(n-1)^m)+(2^m+(n-2)^m)+...+((n-2)^m+2^m)+((n-1)^m+1^m)]-[((n-1)^m+1^m)+((n-2)^m+2^m)+...+(2^m+(n-2)^m)+(1^m+(n-1)^m))]$$
Or not??
And that is equal to $$n|0$$
Is this correct?
Show that if $m,n$ are positive integers, then $1^m+2^m+...+(n-2)^m+(n-1)^m$ is divisible by $n$.
(Hint: Let $s=1^m+2^m+...+(n-2)^m+(n-1)^m$. Obviously $s=(n-1)^m+(n-2)^m+...+2^m+1^m$.
Consider these relations as equivalent modn and add them.)
$$1^m+2^m+...+(n-2)^m+(n-1)^m=((n-1)^m+(n-2)^m+...+2^m+1^m)modn$$
$$(n-1)^m+(n-2)^m+...+2^m+1^m=(1^m+2^m+...+(n-2)^m+(n-1)^m)modn$$
By adding them we get:
$$(1^m+(n-1)^m)+(2^m+(n-2)^m)+...+((n-2)^m+2^m)+((n-1)^m+1^m)=((n-1)^m+1^m)+((n-2)^m+2^m)+...+(2^m+(n-2)^m)+(1^m+(n-1)^m))modn$$
That means that:
$$n|[(1^m+(n-1)^m)+(2^m+(n-2)^m)+...+((n-2)^m+2^m)+((n-1)^m+1^m)]-[((n-1)^m+1^m)+((n-2)^m+2^m)+...+(2^m+(n-2)^m)+(1^m+(n-1)^m))]$$
Or not??
And that is equal to $$n|0$$
Is this correct?