- #1
Math100
- 796
- 221
- Homework Statement
- Given a repunit ## R_{n} ##, show that ## 11\mid R_{n} ## if and only if ## n ## is even.
- Relevant Equations
- None.
Proof:
Suppose ## 11\mid R_{n} ##, given a repunit ## R_{n} ##.
Let ## R_{n}=1\cdot 10^{m}+\dotsb +1\cdot 10+1 ## and ## T=(a_{0}-a_{1})+(a_{2}-a_{3})+\dotsb +(-1)^{m}a_{m} ##.
Then ## T=(1-1)+(1-1)+\dotsb +(-1)^{m}a_{m}=0 ##.
This means ## 11\mid R_{n}\implies T=0 ##.
Thus, ## n ## is even.
Conversely, suppose ## n ## is even.
Then ## 1-1+1-1+\dotsb -1+1=0 ## and ## 11\mid 0 ##.
Thus ## 11\mid R_{n} ##.
Therefore, ## 11\mid R_{n} ## if and only if ## n ## is even.
Suppose ## 11\mid R_{n} ##, given a repunit ## R_{n} ##.
Let ## R_{n}=1\cdot 10^{m}+\dotsb +1\cdot 10+1 ## and ## T=(a_{0}-a_{1})+(a_{2}-a_{3})+\dotsb +(-1)^{m}a_{m} ##.
Then ## T=(1-1)+(1-1)+\dotsb +(-1)^{m}a_{m}=0 ##.
This means ## 11\mid R_{n}\implies T=0 ##.
Thus, ## n ## is even.
Conversely, suppose ## n ## is even.
Then ## 1-1+1-1+\dotsb -1+1=0 ## and ## 11\mid 0 ##.
Thus ## 11\mid R_{n} ##.
Therefore, ## 11\mid R_{n} ## if and only if ## n ## is even.