- #1
Math100
- 802
- 221
- Homework Statement
- Show that ## 13 ## is the largest prime that can divide two successive integers of the form ## n^{2}+3 ##.
- Relevant Equations
- None.
Proof:
Let ## p ## be the prime divisor of two successive integers ## n^2+3 ## and ## (n+1)^2+3 ##.
Then ## p\mid [(n+1)^2+3-(n^2+3)]\implies p\mid 2n+1 ##.
Since ## p\mid n^2+3 ## and ## p\mid 2n+1 ##,
it follows that ## p\mid a(n^2+3)+b(2n+1) ## for some ## a,b\in\mathbb{Z} ##.
Suppose ## a=4 ## and ## b=-2n ##.
Then ## p\mid 4(n^2+3)-2n(2n+1)\implies p\mid 12-2n ##.
Note that ## p\mid (12-2n)+(2n+1)\implies p\mid 13 ##.
Thus ## p\leq 13 ##.
Therefore, ## 13 ## is the largest prime that can divide two successive integers of the form ## n^2+3 ##.
Let ## p ## be the prime divisor of two successive integers ## n^2+3 ## and ## (n+1)^2+3 ##.
Then ## p\mid [(n+1)^2+3-(n^2+3)]\implies p\mid 2n+1 ##.
Since ## p\mid n^2+3 ## and ## p\mid 2n+1 ##,
it follows that ## p\mid a(n^2+3)+b(2n+1) ## for some ## a,b\in\mathbb{Z} ##.
Suppose ## a=4 ## and ## b=-2n ##.
Then ## p\mid 4(n^2+3)-2n(2n+1)\implies p\mid 12-2n ##.
Note that ## p\mid (12-2n)+(2n+1)\implies p\mid 13 ##.
Thus ## p\leq 13 ##.
Therefore, ## 13 ## is the largest prime that can divide two successive integers of the form ## n^2+3 ##.