- #1
Math100
- 802
- 221
- Homework Statement
- If ## gcd(a, 42)=1 ##, show that ## 168=3\cdot 7\cdot 8 ## divides ## a^{6}-1 ##.
- Relevant Equations
- None.
Proof:
Suppose ## gcd(a, 42)=1 ##.
Then ## 42=2\cdot 3\cdot 7 ## and ## gcd(a, 2)=gcd(a, 3)=gcd(a, 7)=1 ##.
Applying the Fermat's theorem produces:
## a\equiv 1\pmod {2}, a^{2}\equiv 1\pmod {3} ## and ## a^{6}\equiv 1\pmod {7} ##.
This means ## a^{6}=(a^{2})^{3}\equiv 1\pmod {3} ##.
Observe that ## a^{6}-1=(a^{3}-1)(a^{3}+1)=(a-1)(a+1)(a^{2}+a+1)(a^{2}-a+1) ##.
Since ## a ## is odd, it follows that ## a>0\implies a\geq 3 ##.
Now we have ## a^{2}\equiv 1\pmod {8}\implies (a^{2})^{3}\equiv 1^{3}\pmod {8}\implies a^{6}\equiv 1\pmod {8} ##.
Thus, ## 168\mid (a^{6}-1) ## because ## 3, 7, 8 ## are relatively prime to each other.
Therefore, if ## gcd(a, 42)=1 ##, then ## 168=3\cdot 7\cdot 8 ## divides ## a^{6}-1 ##.
Suppose ## gcd(a, 42)=1 ##.
Then ## 42=2\cdot 3\cdot 7 ## and ## gcd(a, 2)=gcd(a, 3)=gcd(a, 7)=1 ##.
Applying the Fermat's theorem produces:
## a\equiv 1\pmod {2}, a^{2}\equiv 1\pmod {3} ## and ## a^{6}\equiv 1\pmod {7} ##.
This means ## a^{6}=(a^{2})^{3}\equiv 1\pmod {3} ##.
Observe that ## a^{6}-1=(a^{3}-1)(a^{3}+1)=(a-1)(a+1)(a^{2}+a+1)(a^{2}-a+1) ##.
Since ## a ## is odd, it follows that ## a>0\implies a\geq 3 ##.
Now we have ## a^{2}\equiv 1\pmod {8}\implies (a^{2})^{3}\equiv 1^{3}\pmod {8}\implies a^{6}\equiv 1\pmod {8} ##.
Thus, ## 168\mid (a^{6}-1) ## because ## 3, 7, 8 ## are relatively prime to each other.
Therefore, if ## gcd(a, 42)=1 ##, then ## 168=3\cdot 7\cdot 8 ## divides ## a^{6}-1 ##.