- #1
Math100
- 802
- 222
- Homework Statement
- If ## p ## is a prime satisfying ## n<p<2n ##, show that ## {2n \choose n}\equiv 0\pmod {p} ##.
- Relevant Equations
- None.
Proof:
Let ## n ## be a positive integer.
Then ## {2n \choose n}= \frac{(2n)!}{(n!)(n!)}= \frac{n!(n+1)(n+2)\dotsb (2n)}{(n!)(n!)}= \frac{(n+1)(n+2)\dotsb (2n)}{n!} ##.
This means ## n!\mid [(n+1)(n+2)\dotsb (2n)] ##.
Since ## n<p<2n ##, it follows that ## p\mid [(n+1)(n+2)\dotsb (2n)] ##.
Note that ## gcd(p, n!)=1 ## because ## p ## is prime.
Thus ## p\mid\frac{(n+1)(n+2)\dotsb (2n)}{n!}\implies\ p\mid{2n \choose n}\implies {2n \choose n}\equiv 0\pmod {p} ##.
Therefore, if ## p ## is a prime satisfying ## n<p<2n ##, then ## {2n \choose n}\equiv 0\pmod {p} ##.
Let ## n ## be a positive integer.
Then ## {2n \choose n}= \frac{(2n)!}{(n!)(n!)}= \frac{n!(n+1)(n+2)\dotsb (2n)}{(n!)(n!)}= \frac{(n+1)(n+2)\dotsb (2n)}{n!} ##.
This means ## n!\mid [(n+1)(n+2)\dotsb (2n)] ##.
Since ## n<p<2n ##, it follows that ## p\mid [(n+1)(n+2)\dotsb (2n)] ##.
Note that ## gcd(p, n!)=1 ## because ## p ## is prime.
Thus ## p\mid\frac{(n+1)(n+2)\dotsb (2n)}{n!}\implies\ p\mid{2n \choose n}\implies {2n \choose n}\equiv 0\pmod {p} ##.
Therefore, if ## p ## is a prime satisfying ## n<p<2n ##, then ## {2n \choose n}\equiv 0\pmod {p} ##.