- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Let the real numbers $s,\,t,\,u,\,v$ satisfy the relations $s+t+u+v=6$ and $s^2+t^2+u^2+v^2=12$.
Show that $36 \le 4(s^3+t^3+u^3+v^3)-(s^4+t^4+u^4+v^4) \le 48$.
Show that $36 \le 4(s^3+t^3+u^3+v^3)-(s^4+t^4+u^4+v^4) \le 48$.