- #1
Math100
- 802
- 222
- Homework Statement
- If ## gcd(a, 30)=1 ##, show that ## 60 ## divides ## a^{4}+59 ##.
- Relevant Equations
- None.
Proof:
Suppose ## gcd(a, 30)=1 ##.
Then ## 30=2\cdot 3\cdot 5 ## and ## gcd(a, 2)=gcd(a, 3)=gcd(a, 5)=1 ##.
Applying the Fermat's theorem produces:
## a\equiv 1\pmod {2}, a^{2}\equiv 1\pmod {3} ## and ## a^{4}\equiv 1\pmod {5} ##.
This means ## gcd(a, 4)=gcd(a, 2^{2})=1 ##.
Observe that
\begin{align*}
&a\equiv 1\pmod {2}\implies a^{2}\equiv 1\pmod {2}\\
&a^{2}\equiv 1\pmod {3}\implies a^{4}\equiv 1\pmod {3}.\\
\end{align*}
Now we have ## 2\mid (a^{2}-1)\implies a^{2}\equiv (1-2)\pmod {2}\equiv -1\pmod {2} ##,
so ## 4\mid (a^{2}+1)(a^{2}-1)\implies 4\mid (a^{4}-1) ##.
Since ## 60=3\cdot 4\cdot 5 ## and ## 3, 4, 5 ## are relatively prime to each other,
it follows that ## 60\mid (a^{4}-1) ##.
Thus ## a^{4}\equiv 1\pmod {60}\equiv (1-60)\pmod {60}\equiv -59\pmod {60} ##.
Therefore, if ## gcd(a, 30)=1 ##, then ## 60 ## divides ## a^{4}+59 ##.
Suppose ## gcd(a, 30)=1 ##.
Then ## 30=2\cdot 3\cdot 5 ## and ## gcd(a, 2)=gcd(a, 3)=gcd(a, 5)=1 ##.
Applying the Fermat's theorem produces:
## a\equiv 1\pmod {2}, a^{2}\equiv 1\pmod {3} ## and ## a^{4}\equiv 1\pmod {5} ##.
This means ## gcd(a, 4)=gcd(a, 2^{2})=1 ##.
Observe that
\begin{align*}
&a\equiv 1\pmod {2}\implies a^{2}\equiv 1\pmod {2}\\
&a^{2}\equiv 1\pmod {3}\implies a^{4}\equiv 1\pmod {3}.\\
\end{align*}
Now we have ## 2\mid (a^{2}-1)\implies a^{2}\equiv (1-2)\pmod {2}\equiv -1\pmod {2} ##,
so ## 4\mid (a^{2}+1)(a^{2}-1)\implies 4\mid (a^{4}-1) ##.
Since ## 60=3\cdot 4\cdot 5 ## and ## 3, 4, 5 ## are relatively prime to each other,
it follows that ## 60\mid (a^{4}-1) ##.
Thus ## a^{4}\equiv 1\pmod {60}\equiv (1-60)\pmod {60}\equiv -59\pmod {60} ##.
Therefore, if ## gcd(a, 30)=1 ##, then ## 60 ## divides ## a^{4}+59 ##.