- #1
Math100
- 802
- 221
- Homework Statement
- Given a repunit ## R_{n} ##, show that ## 9\mid R_{n} ## if and only if ## 9\mid n ##.
- Relevant Equations
- None.
Proof:
Suppose ## 9\mid R_{n} ##, given a repunit ## R_{n} ##.
Then ## R_{n}=111\dotsb 1 ##.
Observe that ## 9\mid R_{n}\implies 9\mid (1+1+1+\dotsb +1) ##.
Thus ## 9\mid n ##.
Conversely, suppose ## 9\mid n ##.
Then ## R_{n}=1+1+1+\dotsb +1=n ##, where ## n ## is the sum of digits in ## R_{n} ##.
Since the sum of digits in ## R_{n} ## is divisible by ## 9 ##, it follows that ## 9\mid R_{n} ##.
Therefore, ## 9\mid R_{n} ## if and only if ## 9\mid n ##.
Suppose ## 9\mid R_{n} ##, given a repunit ## R_{n} ##.
Then ## R_{n}=111\dotsb 1 ##.
Observe that ## 9\mid R_{n}\implies 9\mid (1+1+1+\dotsb +1) ##.
Thus ## 9\mid n ##.
Conversely, suppose ## 9\mid n ##.
Then ## R_{n}=1+1+1+\dotsb +1=n ##, where ## n ## is the sum of digits in ## R_{n} ##.
Since the sum of digits in ## R_{n} ## is divisible by ## 9 ##, it follows that ## 9\mid R_{n} ##.
Therefore, ## 9\mid R_{n} ## if and only if ## 9\mid n ##.