- #1
Math100
- 797
- 221
- Homework Statement
- If ## gcd(a, 35)=1 ##, show that ## a^{12}\equiv 1\pmod {35} ##.
[Hint: From Fermat's theorem ## a^{6}\equiv 1\pmod {7} ## and
## a^{4}\equiv 1\pmod {5} ##.]
- Relevant Equations
- None.
Proof:
Suppose ## gcd(a, 35)=1 ##.
Then ## gcd(a, 5)=gcd(a, 7)=1 ##.
Applying the Fermat's theorem produces:
## a^{6}\equiv 1\pmod {7} ## and ## a^{4}\equiv 1\pmod {5} ##.
Observe that
\begin{align*}
&a^{6}\equiv 1\pmod {7}\implies (a^{6})^{2}\equiv 1\pmod {7}\implies a^{12}\equiv 1\pmod {7}\\
&a^{4}\equiv 1\pmod {5}\implies (a^{4})^{3}\equiv 1\pmod {5}\implies a^{12}\equiv 1\pmod {5}.\\
\end{align*}
Thus ## 7\mid (a^{12}-1) ## and ## 5\mid (a^{12}-1) ##.
Since ## gcd(7, 5)=1 ##, it follows that ## 35\mid (a^{12}-1)\implies a^{12}\equiv 1\pmod {35} ##.
Therefore, if ## gcd(a, 35)=1 ##, then ## a^{12}\equiv 1\pmod {35} ##.
Suppose ## gcd(a, 35)=1 ##.
Then ## gcd(a, 5)=gcd(a, 7)=1 ##.
Applying the Fermat's theorem produces:
## a^{6}\equiv 1\pmod {7} ## and ## a^{4}\equiv 1\pmod {5} ##.
Observe that
\begin{align*}
&a^{6}\equiv 1\pmod {7}\implies (a^{6})^{2}\equiv 1\pmod {7}\implies a^{12}\equiv 1\pmod {7}\\
&a^{4}\equiv 1\pmod {5}\implies (a^{4})^{3}\equiv 1\pmod {5}\implies a^{12}\equiv 1\pmod {5}.\\
\end{align*}
Thus ## 7\mid (a^{12}-1) ## and ## 5\mid (a^{12}-1) ##.
Since ## gcd(7, 5)=1 ##, it follows that ## 35\mid (a^{12}-1)\implies a^{12}\equiv 1\pmod {35} ##.
Therefore, if ## gcd(a, 35)=1 ##, then ## a^{12}\equiv 1\pmod {35} ##.