- #1
Math100
- 802
- 221
- Homework Statement
- For any integer ## a ##, show that ## a^{2}-a+7 ## ends in one of the digits ## 3, 7 ##, or ## 9 ##.
- Relevant Equations
- None.
Proof:
Let ## a ## be any integer.
Then ## a\equiv 0, 1, 2, 3, 4, 5, 6, 7, 8 ## or ## 9\pmod {10} ##.
Note that ## a^{2}\equiv 0, 1, 4, 9, 6, 5, 6, 9, 4 ## or ## 1\pmod {10} ##.
Thus ## a^{2}-a+7\equiv 7, 7, 9, 9, 7, 7, 7, 9, 9 ## or ## 7\pmod {10} ##.
Therefore, ## a^{2}-a+7 ## ends in one of the digits ## 3, 7 ##, or ## 9 ## for any integer ## a ##.
Let ## a ## be any integer.
Then ## a\equiv 0, 1, 2, 3, 4, 5, 6, 7, 8 ## or ## 9\pmod {10} ##.
Note that ## a^{2}\equiv 0, 1, 4, 9, 6, 5, 6, 9, 4 ## or ## 1\pmod {10} ##.
Thus ## a^{2}-a+7\equiv 7, 7, 9, 9, 7, 7, 7, 9, 9 ## or ## 7\pmod {10} ##.
Therefore, ## a^{2}-a+7 ## ends in one of the digits ## 3, 7 ##, or ## 9 ## for any integer ## a ##.