- #1
Math100
- 797
- 221
- Homework Statement
- Give an example to show that ## a^2\equiv b^2 \mod n ## need not imply that ## a\equiv b \mod n ##.
- Relevant Equations
- None.
Disproof:
Here is a counterexample:
Let ## a=3, b=4 ## and ## n=7 ##.
Then ## a^2\equiv b^2 \mod n\implies 9\equiv 16 \mod 7 ##.
Thus ## 3\not\equiv 4 \mod 7 ##.
Therefore, ## a^2\equiv b^2 \mod n ## need not imply that ## a\equiv b \mod n ##.
Here is a counterexample:
Let ## a=3, b=4 ## and ## n=7 ##.
Then ## a^2\equiv b^2 \mod n\implies 9\equiv 16 \mod 7 ##.
Thus ## 3\not\equiv 4 \mod 7 ##.
Therefore, ## a^2\equiv b^2 \mod n ## need not imply that ## a\equiv b \mod n ##.