- #1
JPC
- 206
- 1
Homework Statement
(G, *) is a group (where * is a law)
And for all 'i' belonging to {2, 3, 4}, for all (x, y) belonging to G2
(x * y) ^ i = (x^i) * (y^i)
(where ^ is the law : to the power of)
Question : Show that G is an Abelian (commutative) group
Homework Equations
The Attempt at a Solution
we have never done any questions of that sort yet, all i can say is that
"(x * y) ^ i = (x^i) * (y^i)" shows that the law '^' (to the power of) is distributive over the law '*' for 'i' belonging to {2, 3, 4}
But then i don't know where to go
Any help or directions would be appreciated, thank you :)