- #1
mcas
- 24
- 5
- Homework Statement
- Show that a partial molar property is an intensive property
- Relevant Equations
- Intensive property ##I##: ##\sum_{i=1}^{\alpha} (\frac{\partial I}{\partial n_i}n_i)=0##
Extensive property ##E##: ##\sum_{i=1}^{\alpha} (\frac{\partial E}{\partial n_i}n_i)=E##
Partial molar property for an extensive property ##E##: ##E^{(p)}_i=(\frac{\partial E}{\partial n_i})##
I started by taking a derivative:
$$E = \sum_{i=1}^{\alpha} (E_i^{(p)} n_i) \ \ \ | \cdot \frac{\partial}{\partial n_i}$$
$$\frac{\partial E}{\partial n_i}=\sum_{i=1}^{\alpha} [\frac{\partial E_i^{(p)}}{\partial n_i}n_i + E_i^{(p)} \frac{\partial n_i}{\partial n_i}]$$
$$\frac{\partial E}{\partial n_i}=\sum_{i=1}^{\alpha} [\frac{\partial E_i^{(p)}}{\partial n_i}n_i + E_i^{(p)}]$$
$$\frac{\partial E}{\partial n_i}=\sum_{i=1}^{\alpha} [\frac{\partial E_i^{(p)}}{\partial n_i}n_i + (\frac{\partial E}{\partial n_i})]$$
$$\frac{\partial E}{\partial n_i} - E=\sum_{i=1}^{\alpha} [\frac{\partial E_i^{(p)}}{\partial n_i}n_i ]$$
I'm not sure what to do know. I also have a question regarding theleft hand side -- does ##E## defined as ##E =\sum_{i=1}^{\alpha} (\frac{\partial E}{\partial n_i}n_i)## depend on ##n_i##? Or is ##\frac{\partial E}{\partial n_i}## equal to 0?
$$E = \sum_{i=1}^{\alpha} (E_i^{(p)} n_i) \ \ \ | \cdot \frac{\partial}{\partial n_i}$$
$$\frac{\partial E}{\partial n_i}=\sum_{i=1}^{\alpha} [\frac{\partial E_i^{(p)}}{\partial n_i}n_i + E_i^{(p)} \frac{\partial n_i}{\partial n_i}]$$
$$\frac{\partial E}{\partial n_i}=\sum_{i=1}^{\alpha} [\frac{\partial E_i^{(p)}}{\partial n_i}n_i + E_i^{(p)}]$$
$$\frac{\partial E}{\partial n_i}=\sum_{i=1}^{\alpha} [\frac{\partial E_i^{(p)}}{\partial n_i}n_i + (\frac{\partial E}{\partial n_i})]$$
$$\frac{\partial E}{\partial n_i} - E=\sum_{i=1}^{\alpha} [\frac{\partial E_i^{(p)}}{\partial n_i}n_i ]$$
I'm not sure what to do know. I also have a question regarding theleft hand side -- does ##E## defined as ##E =\sum_{i=1}^{\alpha} (\frac{\partial E}{\partial n_i}n_i)## depend on ##n_i##? Or is ##\frac{\partial E}{\partial n_i}## equal to 0?