- #1
- 4,807
- 32
Homework Statement
Let [itex]a_1=\sqrt{2}[/itex], [itex]a_2=(\sqrt{2})^{a_1}[/itex],... [itex]a_{n+1}=(\sqrt{2})^{a_n}[/itex]. Show that a_n-->2. you may use any relevant fact from calculus.
The Attempt at a Solution
I noticed that [itex]\ln(a_1)=\ln(\sqrt{2})=\ln(2)/2[/itex], [tex]\ln(a_2)=\ln((\sqrt{2})^{\ln(2)/2})=(\ln(2)/2)^2[/tex], ..., [itex]\ln(a_n)=(\ln(2)/2)^n[/itex]. But ln(2) < 2. So ln(2)/2 < 1, and thus ln(a_n)-->0 <==> a_n-->1. What's wrong?
Last edited: