- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! :D
I am looking at this exercise:
Let f: (-a,a)[tex]\rightarrow \mathbb{R}[/tex] continuous at [tex]0[/tex].We suppose that for a [tex]t \epsilon (0,1) [/tex] this condition is satisfied:
[tex] \lim_{x\rightarrow 0}\frac{f(x)-f(tx)}{x}=b [/tex]
Show that [tex] f'(0) [/tex] exists and find its value.
I thought that I could write it like that [tex] \lim_{x\rightarrow 0}\frac{f(x)-f(0)+f(0)-f(tx)}{x}=b \Rightarrow \lim_{x\rightarrow 0}\frac{f(x)-f(0)}{x}+\lim_{x\rightarrow 0}\frac{f(0)-f(tx)}{x}=b\Rightarrow (1-\frac{1}{t})\lim_{x\rightarrow 0}\frac{f(x)-f(0)}{x}=b[/tex]
So,[tex]f'(0)[/tex] exists and is equal to [tex] \frac{bt}{t-1} [/tex] .Are my thoughts right or am I wrong?
I am looking at this exercise:
Let f: (-a,a)[tex]\rightarrow \mathbb{R}[/tex] continuous at [tex]0[/tex].We suppose that for a [tex]t \epsilon (0,1) [/tex] this condition is satisfied:
[tex] \lim_{x\rightarrow 0}\frac{f(x)-f(tx)}{x}=b [/tex]
Show that [tex] f'(0) [/tex] exists and find its value.
I thought that I could write it like that [tex] \lim_{x\rightarrow 0}\frac{f(x)-f(0)+f(0)-f(tx)}{x}=b \Rightarrow \lim_{x\rightarrow 0}\frac{f(x)-f(0)}{x}+\lim_{x\rightarrow 0}\frac{f(0)-f(tx)}{x}=b\Rightarrow (1-\frac{1}{t})\lim_{x\rightarrow 0}\frac{f(x)-f(0)}{x}=b[/tex]
So,[tex]f'(0)[/tex] exists and is equal to [tex] \frac{bt}{t-1} [/tex] .Are my thoughts right or am I wrong?