- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
In a space of finite measure, if $f$ and $g$ are measurable we set $\rho (f,g)=\int \frac{|f-g|}{1+|f-g|}d \mu$.
Show that $\rho$ is metric and that $f_n \rightarrow f$ as for $\rho$ if and only if $\forall c>0$ we have that $\mu(\{|f_n-f|>c\})\rightarrow 0$.What does "$f_n \rightarrow f$ as for $\rho$" mean ?? (Wondering)
In a space of finite measure, if $f$ and $g$ are measurable we set $\rho (f,g)=\int \frac{|f-g|}{1+|f-g|}d \mu$.
Show that $\rho$ is metric and that $f_n \rightarrow f$ as for $\rho$ if and only if $\forall c>0$ we have that $\mu(\{|f_n-f|>c\})\rightarrow 0$.What does "$f_n \rightarrow f$ as for $\rho$" mean ?? (Wondering)